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THIN-FILM GUIDED-WAVE DEVICES FOR INTEGRATED/FIBER OPTIC
SIGNAL PROCESSING AND COMMUNICATIONS

Annual Scientific Report

Chen S. Tsai, Frincipal Investizator
Professor of Electrical Engineering
University of California
Irvine, Califoruia 92717

I. INTRODUCTION
. Integrated or Guided-Wave Optics is an emerging technology that has the

ultimate potential of integratinz miniature optical components such as laser
light sources, modulators, switches, deflectors, lenses, prisms, and detectors
in a common gsubstrate. The resultant integrated optic circuits and subsystems
are expected to have a number of advantages over the conventional bulk opticel
systems in certain areas of applications. Some of the advantages include
smaller size and lighter weight, wider bandwidth, lesser electrical drive

power requirement, greater signal acceasibility, and integratability. The
integrated optic circuits are also expected to possess sdvantages in scability,
reliability, ruggedness, and ultimate cost. It nas been recognized for some ,
time that the most immediate applications of integrated optics lie in the
areas of wideband multichannel communications and signal processing (for both
civilian applications such as fiber optic systems and military harrdwares such é

e oo Al

as sensors and radars).
The general objectives of this research program are to study the basic
: shysizal mechanigms/phenomenon of new and novel guided-wave devices with ap-
f plication to wideband multichannel aptical information procesoingQ(*)' The
. ®ajor tasks that have been carried out during this program year include ;
? theoretical and experimental research or the following four specific topics:

°‘§ 1. Wideband Acoustooptic Bragg Cell Using A Tilted-Finger Chirp Trans-

ducer,
2. Guided-Wave Acoustooptic Interactions and Devices in Zn0/GaAs Wave-

)
i
i

guides,
3. Guided-Wave Magneto-Optic Bragg Diffraction and Devices ia YIG/GGG

Waveguides, and
4. Hybrid Integrated Acoustooptic Time-Integrsting Correlator Using

Anisotropic Bragg Diffraction.
Some significant progress has been made in each research topic.
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i II. PRNGRESS DURING CURRENT PROGRAM YEAR
% A. Summary of Research Achievements
Research efforts for the current program year have been focused on topics

as listed in the Introduction. For topic #1, a theoretical analysis on the
ultimate deflector limitations as determined by the various sources of phase
distortions in the SAM has been completed. Experimental verification of the
theoretical prediciiocns is yet to be completed due to the lack of fabrication
facility for GHz SAW transducers. Since topic #2 and topic #3 have been

practically unexplorad previously but were believed to possess great future
f potential, a considerable amount of effort was spent on necessary preparations

for in-depth studies of these two topics. The preparations include preliminary

il il st e oL

theoretical formulation of the problems, establishment of laboratory facilities
for fabrication of the devices, and construction/assemblage of a large variety
of required optical and RF equipments. Some very significant progress has

been achieved in both topics. For example in Topic #2, the theoretical analysis
has uncovered a very efficient wideband Bragg diffraction configuratioz which
involves a single-mode optical waveguide in the (00l) plane of a GaAs substrate i
with the SAW propagating in the <100> direction. A paper in connection with i
topic #2 was presented at the 1982 Ultrasonics Symposium and a proceeding ;

paper was subsequently published.
In regard to topic #4, some effort was also spent in the study and reali-

zation of a Hybrid Integrated Acoustooptic Time-Integrating Correlator which
utlizes anisotropic Bragg diffraction. This particular project was not listed
in the original proposal but was jointly supported by the AFOSR and the NSF
during the past year. Some preliminary results were published in the Technical

. Digest of 1982 Topical Meeting on Integrated Optics while more refined results
s were published in the Proceedings of 1982 Ultrasonics Symposium.
. Finally, continued efforts were also made to complete establishment of

the microfabrication facility for integrated optical and SAW devices.

B. Research Progress
A more detajled description of the progress and the achievements now follows:

1. Wideband AO Bragg Cell Using A Tilted-Finger Chirp Transducer
The tasks of this research project are to carry out theoretical and ex~

M et e i

perimental studies aimed at determining the ultimate limitations of the Wideband
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A0 Bragg Cell Using a Tiltod-Finger Chirp Transducer (Fig. 1) which had
evolved from an earlier AFOSR progrnn.(2’3) Spccifically, phase fromt
distortions of the SAW which result from the varying width and crientation
of the finger electrodes acroas the transducer aperture and their impacts
on the performance characteristics of the resultant Bragg Cell are to be
studied. Thrae sources cfor phase distortions have been identified:

1. For each SAW frequency, different portions (segments) of the finger
electrodes are effective. Since there exists a varying step height between
esch adjacent segments, an uuwanted steering of the acoustic phase front is
created. In some situations, the steering angle is so large that Bragg con-
dition is totally destroyed. This effect can be detrimental unless some means
is found to compensate it. 2. Similarly, for each SAW frequency, the propa-
gation dire.tions of the SAW from each effective segment of the finger elec-
trodes diverge from each other. As a result, the diffraction e«fficiency,
the Bragg bandwidth, and the beam profile of the deflected spota are all
affected. 3. Both electric and mass loadings of the finger electrodes may
cause distortions of the phase front of the SAW generated. A rheoretical
analysis ‘Jhich involves complex expressions and computer calculations has
been carried out.. This analysis shows that the wavefront distortions may
cause detrimental effects on the diffraction efficiency and the AO Rragg
bandwidth, especislly as the center frequency and the bandwidth of the chirp
transducer are increased. Unavailability of high-performance SAW transducers
at 1GHz center frequency and above has kept us from experimental study aimed
at verifying some of the predicted results. This experimental task will be
pursued when such SAW transducers can be fabricated in the author's laboratory.
2. Wideband AO Interactions And Devices In Zn)/CaAs Waveguides

As indicated previously, integrated optic modules or circuits are

expected to have a number of advantages over the conventional bulk counter-
parts in certain areas of optical signal processing applicatiors. In fact,
one example of such ipplications being very actively pursued by government
agencies and industriil communities worldwide is real-time spectral analysis
of very widebard radar signals.(3) Another example whicl: is expected to be
picked up by the industrial ccmmunities is the acoustooptic time-integrating
correlation under investigation at this suthor's laboratory.(a) In both
applications, wideband LiNb03 acoustooptic Bragg cells are used as the inter-
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face device between the light wave and the RF signalas to be processed. In
the meantime, utilization of integrated optics frechnology to ocher civilian
applications such as fiber optic sensing, optical sensing in robotics tech-
nolegy, and optical computation have begun to receive genuine interest.

Despite the various successes of the LiNb03~baaed videband guided-wave
AO Bragg devices referrad to above, the ultimate advantages of integrated
optics cannot be fully accomplished because it is difficult to realize a
total or monolithic integration in a common I.iNbO3 substrate. Thia is due
to the fact that LiNbO3 is an insulating material and thus imposaible to
incorporate the diode laser or the photodetector array (both requiring
semiconducting materials) in the same substrate. Consequently, only a
partial or hybrid integration has been realized using the LiNb03 substrate.
Clearly, an alternate substrate material is needed to realize monolithic
integration. GaAs is a semiconducting material which has recently become
a substrate material (only second to siiicon in importance) for conven~
tional integrated electronics. Meanwhile, as a result of recent advance-
ment on the fabricetion of the dicde lasers aund the photodetectors in
GaAs waveguides, GaAs and related compounds are also at presemt considered
the most promising candidate materials for monolithic integration of micro-
optic components. Clearly, in comparision to the L:leO3 aubgtrate, the
GaAs substrate provides a greater future potential for integration of
active and passive components that are required in information processing
and communicacions applications. One of the key componeunts in such future
GaAs integrated optic circuits is an efficient wideband acoustcoptic (AQ)
modulator/deflector. Some rslated study was reported previously by othcrs.(s)
Tha AFOSR-supported research project is aimed at developing this key com-

ponent.

In the theoretical study, we have diacovered an interaction configuration
of great interest, namely the one with the SAW propagating alonz the <100> or
<110> direction of the (00l) plane of a GaAs substrate.(b) The analysis has
shown that for SAW propagation directions such as those referred to above
numerical computations can be simplified considerably t: generate a varlety
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of design data unavailable heretofore. For example, it is shown that very
efficient wideband Brugg diffraction is achiavable by using the <100> -
propagating SAW and a single~mode optical waveguide (See Fig. 2).

In the experimental study, we were convinced at the outset that establish-
ment of an in-house RF sputtering facility for Zn0 transducer would greatly
expedite this research. Consequently, a great deal of effort was made toward
the construction of a modern aputtering system at the author's laboratory.
This construction has been completed (See Fig. 3). In fact, the system haa
gone through test run and has already produced good-quality ZnQ SAW trane-
ducers on glass substrates. Although at lower degree of success some Zn0
films were also deposited on Alxcal_xAs aubstrates for transduction of SAW
at 200 MHz.

As a second step to the experimental study, the device configuration as
shown in Fig. 4 was fabricated. A 2-micron thick piezoelectric Zn0 film was
first deposited on the GaAs waveguide by RF-magnetron sputtering systam
referred to above. A 200 MHz ID electrode (20 finger pairs and 1 mm aperture)
was subsequently formed on the Zn0 film. The very high refractive index of
GaAs, namely, 3.4 at 1.15 micron wavelength has made excitation of GOW through
prism coupling excremely difficult. Consequently, the (110) cleaved plane
of GaAs was used to edge-couple the light beam. This preliminary A0 Bragg
cell has demonstrated high diffraction efficiency, namely, 50X diffraction
at 47 mw RF drive pover.(6) This preliminary result is in line with the
theoratical prediction. Improvements in waveguide and SAW transducer fabrica-

tion should produce even better results and closer agreement with the theoreti-

cal results.

3. Planar Guided-Wave Magneto-Optic Bragg Diffraction And Devices
As indicated in the original proposal,‘l)

Interaction between Guided-Optical Waves and Magnetostatic Surfusce Waves

in Thin-Film YIG/GGG Composite and its Applicaticn to Optical Information

Processing. Since this research had been totally unexplorad and since the

this project concerns Bragg

experimental set-up for observation of Bragg difiraction phenomena predicted
requires a large assortment of microwave and optical components a considerable

amount of time and efforts have been spent in building and assembling of the

experimental set-up from scratch. Although actval Bragg diffractio=. is yet to

be demonstrated significan: progzess has been made toward this objective.
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} : The experimental configuration being explored is shown in Pig. 5. The
7 YIG/GGG sample furnished by Rockwell International was mounted on a specially-
made holder and inserted in the air gap of an electromagnet. A nicrowave sig-
nal centered at 3.1 GHz was then applied to one of the metal strips to excite
the magnetostaiic surface waves (HSSH).(7-9) The MSSW generated propagates
in the plane of the sample and is detected by the other matal atrip.(7-9)
; By changing the magnitude of the D-C magnetic field the frequency of the MSSW
; has been tuned from 2.56 GHz to 3.55 GHz, demonstrating a bandwidth of 1 GHz.
’ Fig. 6 shows a typical waveform of the MSSW that has been obtained using a
pulse-modulated microwave carrier at 3.1 GHz. Note that the transit rime
| between the two metal strips (at a separation of 0.96 cm) is approxiwmately
160 ns. This time delay indicates a MSSW propagation veloctiy of 6.0:106 cm/sec
which is about two oivders of magnitude higher than that >f the surface acoustic
waves--potentially very desirable for high-speed optical information processing.
Following the successful excitation of the MSSW an attempt was undartaken

to excite guided-optical wave using a He-Ne laser at 6328 Z as the second step
toward actual magneto-optic Bragg diffraction experiment. Unfortunately, the
optical insertion loss of the sumple was found to be too excessive at this

L visible light wavelength to obtain any meaningful result. Subsequently, a
Jodon He-Ne laser at 1.15 um wavelength was ordered using the funds provided

: by the University. The laser arrived finally after a long delivery time but

wvas found to be unoperational. This laser was shipped back to us recently ;

S b b i L

after repairment. We have used the output of this lascr and a pair of rutile

prisms to excite and couple out guided-light beam. However, the very weak

coupling observed thus far indicates that the thickness of the YIG film ("10um) j

is not optimym. New samples of various film thickness are being requested. ;
;f In the meantime, a more sensitive piiotodetectiag system at 1.15 i'm is being
I constructed.

In summary, although actual Bragg diffraction from MSSW is yet to be
demonstrated, significant progress has been made toward this objective. J
4. Hybrid-Integrated Acvustooptic Time-Integrating Correlator Using Suided-

Wave Anisotropic Bragg Diffraction
Time-integrating correlation of RF signals using bulk-wcve isotropic AO

.
PO

Bragg diffraction has become a subject of great interest because ot its ]
applications in radar signal processing and con-unicltionn.(lo) Some encourag-
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ing results with the experimsats that utilize guided~wave isotropic Bragg
diffraction was reported earlier by us.(ll) Subsequently, hybrid and mono-
lithic structures for integrated optic implementations were .“"..t.d.(12.3)
In a conventional configuratfon that utilizes either bulk-wave or guide-wave
isotropic Bragg diffraction, a pair of imaging lenses and a spatial filter
are used to separate the diffracted light beam from the undiffracted light
beam. Through the supports of the AFOSR and the NSF we have most recently
explored a new and novel hybrid structure vhich utilizes guided-wave aniso-
tropic Bragg diffraction und hybrid integration (see Fig. 7). This new
structure can conveniently incorporate a thin-film polarizar to separate the
diffracted light from the undif fracted light prior to detection and, therefore,
eliminaies the need of imaging lenses and spatial filter. As a result, the
A0 time-integrating correlator is not only much amaller along the optical
propagation path and thus a much smcller optical) insertion loss but also
easier to be implemented in integrated optic format. A laser diode and a
thin-film polarizer/photodetector array (CCPD) composite are butt-coupled to

the input and the output end faces of a Y-cut LiNb03 plate (2me x 12um x 15.4mm),

resvectivelv., A single veodesic lens (with 8mm focal length is used to
collimate the inout light besam vrior to interaction with the SAW. The SAW
propagates at 5 degrees from the X-axis of the LiNb03 platc(13) to facilitate
anisotrovic Bragg diffraction between TBO and THO wmodes. In operation, the
correlation betweer the two signals Sl(t) and sz(t) is performed bv separatasly
modulating the laser diode and the RF carrier to the SAW transducer. ¥inally,
the time-integrating correlation waveform is read ou: from the detector array
by the charged-coupled device. Fig. 8(a) and 8(b) show, respectively, the
autocorrelation wvaveforms of a 20 MGz modulation pulse signal (Pulse width =
0.05 us) and a 12.5 MHz square-wive modulation signal (periodicity = 0.08 us),
both at the carrier frequency of 391 MH=z.

In summary, encouraging results have been obtained in time-integrating
correlation experiments which utilize guided-wave anisotropic Bragg diffraction
in a Y-cut LiNb03 plate of very small dimensions (2mm x 12mm x 15.6-l).(1‘)

The preliminary experiment carried ovut with the correlator of incomplete hybrid
integration at 0.6328 um wavelength and the SAW at 391 Miz center frequency

has demonstrated a time-bandwidth product of 4.2x105. We plan to continue this
research through othar support by completing the hybrid integration and carry-
ing out detailed theoretical analysis to determine the ultimate performance
figures of the integrated correlator module.
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